Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO.

نویسندگان

  • Maria L Belladonna
  • Ursula Grohmann
  • Paolo Guidetti
  • Claudia Volpi
  • Roberta Bianchi
  • Maria C Fioretti
  • Robert Schwarcz
  • Francesca Fallarino
  • Paolo Puccetti
چکیده

Dendritic cell (DC) tryptophan catabolism has emerged in recent years as a major mechanism of peripheral tolerance. However, there are features of this mechanism, initiated by IDO, that are still unclear, including the role of enzymes that are downstream of IDO in the kynurenine pathway and the role of the associated production of kynurenines. In this study, we provide evidence that 1) murine DCs express all enzymes necessary for synthesis of the downstream product of tryptophan breakdown, quinolinate; 2) IFN-gamma enhances transcriptional expression of all of these enzymes, although posttranslational inactivation of IDO may prevent metabolic steps that are subsequent and consequent to IDO; 3) overcoming the IDO-dependent blockade by provision of a downstream quinolinate precursor activates the pathway and leads to the onset of suppressive properties; and 4) tolerogenic DCs can confer suppressive ability on otherwise immunogenic DCs across a Transwell in an IDO-dependent fashion. Altogether, these data indicate that kynurenine pathway enzymes downstream of IDO can initiate tolerogenesis by DCs independently of tryptophan deprivation. The paracrine production of kynurenines might be one mechanism used by IDO-competent cells to convert DCs lacking functional IDO to a tolerogenic phenotype within an IFN-gamma-rich environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the Wnt-β-catenin signaling pathway in melanoma-mediated dendritic cell tolerization

Recent studies have shown that tumor immune evasion mechanisms significantly contribute to immunotherapy failure. Emerging data is indicating that tumor-associated dendritic cells (DCs) undergo phenotypic tolerization and promote the differentiation and activation of regulatory T cell (Treg) populations to generate local immune subversion. The critical role of DCs in orchestrating antitumor imm...

متن کامل

HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells.

Infection with the human immunodeficiency virus type-1 (HIV) results in acute and progressive numeric loss of CD4(+) T-helper cells and functional impairment of T-cell responses. The mechanistic basis of the functional impairment of the surviving cells is not clear. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that inhibits T-cell proliferation by catabolizing the essential ...

متن کامل

The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation.

Human plasmacytoid dendritic cells (PDCs) can drive naive, allogeneic CD4(+)CD25(-) T cells to differentiate into CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). However, the intracellular mechanism or mechanisms underlying PDC-induced Treg generation are unknown. In this study, we show that human PDCs express high levels of IDO, an intracellular enzyme that catabolizes tryptophan degradation...

متن کامل

Involvement of the Kynurenine Pathway in Human Glioma Pathophysiology

The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxyg...

متن کامل

Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease

The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 177 1  شماره 

صفحات  -

تاریخ انتشار 2006